10MAT31 **USN**

Third Semester B.E. Degree Examination, December 2012 **Engineering Mathematics – III**

Time: 3 hrs. Max. Marks: 100

> Note: Answer FIVE full questions, selecting at least TWO questions from each part.

Find the Fourier series of $f(x) = x - x^2$, $-\pi \le x \le \pi$. Hence deduce that

$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots = \frac{\pi^2}{12}$$
 (07 Marks)

Is the above deduced series convergent? (Answer in Yes or No)

b. Define: i) Half range Fourier sine series of f(x)

ii) Complex form of Fourier series of f(x)

Find the half range cosine series of f(x) = x in 0 < x < 2. (07 Marks)

Obtain a_0 , a_1 , b_1 in the Fourier expansion of y, using harmonic analysis for the data given.

(06 Marks)

Find the Fourier transform of

$$f(x) = 1 - x^2$$
 for $|x| \le 1$
= 0 for $|x| > 1$

Hence evaluate
$$\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^{3}} \cos \left(\frac{x}{2}\right) dx$$
 (07 Marks)

b. Find the Fourier sine transform of
$$\frac{e^{-ax}}{x}$$
 (07 Marks)

Find the Fourier cosine transform of

$$f(x) = 4x$$
, for $0 < x < 1$
= $4 - x$, for $1 < x < 4$
= 0, for $x > 4$ (06 Marks)

- Write down the two dimensional heat flow equation (p d e) in steady state (or two 3 a. dimensional) Laplace's equation. Just mention.
 - ii) Solve one dimensional heat equation by the method of separation of variables. (07 Marks)
 - Using D'Alembert's method, solve one dimensional wave equation. (07 Marks) b.
 - A string is stretched and fastened to two points l apart. Motion is started by displacing the string in the form of $y = a \sin(\pi x/l)$ from which it is released at time t = 0. Show that the displacement of any point at a distance x from one end at time t is,

$$y(x,t) = a \sin\left(\frac{\pi x}{\ell}\right) \cos\left(\frac{\pi ct}{\ell}\right)$$

Start the answer assuming the solution to be

$$y = (C_1 \cos(px) + C_2 \sin(px))(C_3 \cos(cpt) + C_4 \sin(cpt))$$
 (06 Marks)

4 a. Fit a linear law, P = mW + C, using the data

<u>P</u>	12	15	21	25
W	50	70	100	120

(06 Marks)

b. Find the best values of a and b by fitting the law $V = at^b$ using method of least squares for the data,

V (ft/min)	350	400	500	600	
t (min)	61	26	7	26	

Use base 10 for algorithm for computation.

(07 Marks)

c. Using simplex method,

 $Maximize Z = 5x_1 + 3x_2$

Subject to,
$$x_1 + x_2 \le 2$$
; $5x_1 + 2x_2 \le 10$; $3x_1 + 8x_2 \le 12$; $x_1, x_2 \ge 0$. (07 Marks

PART - B

- 5 a. Use Newton-Raphson method, to find the real root of the equation $3x = (\cos x) + 1$. Take $x_0 = 0.6$. Perform two iterations. (06 Marks)
 - b. Apply Gauss-Seidel iteration method to solve equations

$$20x + y - 2z = 17$$

 $3x + 20y - z = -18$
 $2x - 3z + 20z = 25$

Assume initial approximation to be x = y = z = 0. Perform three iterations.

(07 Marks)

c. Using Rayleigh's power method to find the largest eigen value and the corresponding eigen vector of the matrix.

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

Take $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as the initial approximation. Perform four iterations.

(07 Marks)

6 a. Use appropriate interpolating formula to compute y(82) and y(98) for the data

x	80	85	90	95	100
у	5026	5674	6362	7088	7854

(07 Marks)

- b. i) For the points $(x_0, y_0)(x_1, y_1)(x_2, y_2)$ mention Lagrage's interpolation formula.
 - ii) If f(1) = 4, f(3) = 32, f(4) = 55, f(6) = 119; find interpolating polynomial by Newton's divided difference formula. (07 Marks)
- c. Evaluate $\int_{0}^{6} \frac{1}{1+x^2} dx$, using
 - i) Simpson's 1/3rd rule ii) Simpson's 3/8th rule iii) Weddele's rule, using

Х	0	1	2	3	4	5	6
$f(x) = \frac{1}{1+x^2}$	1	0.5	0.2	0.4	0.0588	0.0385	0.027

(06 Marks)

- 7 a. Solve the wave equation $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$ subject to u(0, t), u(4, t) = 0. $u_t(x, 0) = 0$ and u(x, 0) = x(4 x) by taking h = 1, k = 0.5 upto four steps. (07 Marks)
 - b. Solve two dimensional Laplace equation at the pivotal or nodal points of the mesh shown in Fig.Q7(b). To find the initial values assume $u_4 = 0$. Perform three iterations including computation of initial values. (07 Marks)

- c. Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, subject to the conditions $u(x, 0) = \sin \pi x$, $0 \le x \le 1$; u(0, t) = u(1, t) = 0. Carry out computations for two levels, taking h = 1/3, k = 1/36. (06 Marks)
- 8 a. Find the z-transform of

$$\frac{n}{3^n} + 2^n n^2 + 4\cos(n\theta) + 4^n + 8$$
 (07 Marks)

- b. State and prove i) Initial value theorem ii) Final value theorem of z-transforms. (07 Marks)
- c. Using the z-transform solve

$$u_{n+2} + 4u_{n+1} + 3u_n = 3^n$$
 with $u_0 = 0$, $u_1 = 1$. (06 Marks)

* * * * *

